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Comparison of the results obtained by both optical- 
diffraction and X-ray-diffraction methods lends sup- 
port to the suggestion made by Edmunds & Hinde, 
in connection with AuCu a, that  ordering progresses 
through the general interchange of nearest-neighbour 
atoms so that  like atoms tend to avoid each other. 
However, it seems unlikely that  reduction in strain 
energy contributes to the ordering forces in CdMg a as 
the atoms of Cd and Mg have almost identical radii, 
although there remains the possibility that  the con- 
stituent ions of the alloy may differ appreciably in 
radii. 

The authors are indebted to Dr F. Fowweather, of 
the College of Science and Technology, Manchester, 
for carrying out the two-dimensional Fourier analysis 
on the Manchester computer, and to Prof. A. J. C. 
Wilson for helpful discussion of the problem. 
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An earlier theory of the scattering of X-rays by a crystal containing defects is extended to the case 
where atoms are displaced by comparatively large amounts from their'mean positions. It is assumed 
that a displaced atom is influenced to about the same extent by a number of defects. 

In  an earlier paper (Cochran, 1956; referred to here as 
Part  I) it was shown that  the intensity of X-ray 
scattering from a crystal containing defects depends 
in a simple way on the Fourier transforms of the de- 
fects considered separately. The theory given in that  
paper is believed to be accurate, no matter how large 
the displacements of the atoms from their positions 
in the corresponding perfect crystal, in the situation 
where each atom is affected by no more than one 
defect. The theory also applies to the more important  
case where each atom is influenced by a large number 
of defects, provided that  the displacement u of an 
atom is small enough for the approximation 

exp [2~iu • S ] - I  = 2~ iu .  S 

to apply, S being a vector in reciprocal space, as 
defined in Part  I. Taking S = 1-3 A -1 (the limit of 

Cu K s  radiation) requires u to be less than about 
0-02 A, a very restrictive condition. In applying this 
theory to the problem of the scattering of X-rays by 
a structure containing interstitial atoms, considerably 
larger displacements are encountered. We have there- 
fore extended the theory to the situation where the 
displacements may be large, and are brought about 
by the simultaneous operation of a large number of 
defects, randomly distributed throughout the crystal. 
The theory of Part  I took account of possible changes, 
by replacement, of the scattering factors of atoms; the 
present theory is restricted to defects made up of 
atomic displacements. 

The intensity from the crystal containing defects 
will be 

lfc+~(S)l 2 =/}__Y/p/~ exp [2=i(Rp-Rq). S] 
p q 

× exp [2rd (up-  uq) • S] . (1) 
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The notation is largely as in Par t  I. R~ locates an 
atom whose scattering factor is f~, and which is dis- 
placed by u~. Defects 5~, . . . ,  ~,, together with the 
perfect crystal C, make up a defective crystal C+A 
whose Fourier transform is Tc+~(S). If e~p, . . . ,  e,~ 
are the displacements of the pth atom produced by 
~ . . . .  , ~, acting separately, u~ is given by 

Up = ~ "  Ejp , 
i = 1  

tha t  is, the principle of superposition is assumed. The 
coordinate parameters of an atom in the average unit 
cell of C+/1 are assumed to be the same as they were 
in the perfect crystal C, possibly after allowance for 
expansion of the lattice as in Par t  I. We define u as 
the component of u in the direction of S, and e 
similarly. Since u will not be used to denote ]u I, no 
confusion need arise. 

Our fundamental  assumption, which can be justified 
by appeal to the central limit theorem, is tha t  the 
random distribution of the defects ~,  which will 
result in the displacement components ez . . . .  , e, 

varying in a random manner, will cause u = ~ e1 to 
~=1 

have a Gaussian distribution, as will up-uq.  Corre- 
sponding to a fixed value of R~-Rq, and therefore 
to a fixed value offpfq,  there are N z values of up-uq,  
and these N z points will have a Gaussian distribution 
about zero, with variance (up-uq)% (The actual value 
of Nz need not concern us; it tends to N, the number 
of unit cells in the crystal, when R~-Rq is small.) 
We now replace this distribution of points on a line 
by a continuous distribution 

(2~ (up-Uq)~)½ exp 2 (u~-  Uq) ~ . (2) 

Expression (1) may be rewritten as 

I T c + ~ ( S ) l  ~ = Zf~fq exp [2~i (R~-Rq)  • S] 
x (Z' exp [2~i (u~-uq) • S]) , (3) 

the outer sum being over all values of R p - R q ,  while 
the inner is over all values of p and q for which R~-Rq  
is constant. We now replace the summation within 
brackets of (3) by the equivalent integration involving 
(2), which is 

~o +°~ ~ 1  

exp e x p  du 
2 ( % -  uq) ~: 

= N 1 exp [-27e2Sg(up-uq)~]. (4) 

Thus (1), via (3) and (4), may  be written 

I Tc+a(S)l ~ = 2 . ~  fp fq exp [2g i (Rp-  Rq). S] 
p q 

× exp [-2xe2S 2 (up-uq) ~] . (5) 

This expression will be recognized as one which occurs 

in the theory of thermal diffuse scattering (James, 
1948), where, however, the second exponential results 
from averaging exp [2gi(up-uq) • S] over all values 
of the time, on which up and uq depend in tha t  case. 
Our derivation shows tha t  (5) is of more general ap- 
plication. This equation may be written as 

I T c + ~ ( S ) I 2  1 1 = .~,.,~,fpfq exp [ 2 z i ( R p - R q ) .  S] 
p q 

× exp [4x2Sgupuq] , (6) 

where f~ =fpexp [-2x2Sgu~] and f~=fqex__p [-2xgS~uq~]. 
not to equal 2 Most of the I t  is quite possible for up Uq. 

apphcations of the theory will be to crystals of simple 
structure in which the atoms are equivalent, and we 

may take f l  = f exp [ - M ] ,  where M = 2~2S2u 2. We 
now expand the second exponential of (6) as far as 
the second term. The approximation involved is less 
serious than tha t  involved when the method of Par t  I 
is applied to this situation. This gives 

ITc+~(S)[ = 

= exp [ - 2 M ]  ..~,..~,fpfqexp [2~i(Rp-Rq) • S] 
p q 

+492S 2 exp [ - 2 M ]  ~: fl..'fpfqUpUq 
P q 

× exp [2~i (Rp-Rq) • S] . (7) 

The first term will be recognized as the Laue-Bragg 
intensity JI(S),  the second as the diffuse intensity 
J2(S). 

So far the result is not particularly novel; it is an 
obvious generahzation of part  of the theory of thermal 
diffuse scattering as given by James (1948). We now 
have to express this result in terms of the Fourier 
transforms of the individual defects, as in Par t  1. 

Since up = ~ ejp, and the defects which produce the 
i = 1  

displacements are randomly distributed, we have 

upuq = .~ ejpejq (8) 
i = 1  

and 
- -  7 /  _ _  

M =- 2~2S2u ~ = 2g~S ~ ~ 'e~.  (9) 
j = l  

We now consider the intensity given by a crystal 
containing only one defect (~j. I t  was shown in Par t  I 
tha t  the diffuse intensity is then ]T~i(S)] ~, where 

T~;(S) = 2 f p  exp [2~iRp. S] (exp [2~iejpS]- l ) .  (10) 
p 

We now, however, expand the term in brackets, 
deliberately retaining only one term, and write 

To/(S) = 2g iS .~ fpe jp  exp [2giRp.  S ] ,  ( l l )  
p 

from which 

IT,~/(S)I ~ = 4 ~ S  ~ ~ .~,fpfq ejpejq 
p q 

× exp [27d(Rp-Rq).  S ] .  (12) 
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Comparing (12) with the second term of (7), and using 
(8), we see that  

J2(S) -- exp [ - 2 M ]  ~ ]T~/(S)[ 2 . (13) 
] = 1  

2 (We may note tha t  if the approximation up = u~ is 
not justifiable in a particular case, (7) can be expressed 
in terms of f~ and f~, and it is only necessary to re- 
define (11) with f~ replacing fp, thus 

T~j(S) 2xdS 1 = .~,fpejp exp [2~iRp S] , 
p 

to obtain the more exact result 

J2(S) = ~ [T~j(S)[ 2 . (13a) 
j=l 

In what follows it will be assumed that  this is an un- 
necessary refinement.) 

The result (13) expresses the diffuse intensity in 
terms of the Fourier transforms of the individual 
defects. I t  differs from tha t  given in Par t  I in two 
respects: 

(1) The factor exp [ - 2 M ]  did not appear previously. 
This is understandable, as the displacements were 
necessarily taken to be small in the case where atoms 
were influenced by more than one defect. 

(2) I t  is now specifically required tha t  T6j(S) should 
be calculated from (11), and not from (10). The former 
will be much the simpler for numerical calculations. 

The factor e x p [ - 2 M ]  can also be expressed in 
terms of the Fourier transforms of the individual de- 
fects. The theory of Par t  I gave the changed Laue-  
Bragg intensity as 

j=l F-ih-)+v(-m} (14) 

H is the value assumed by S at  a reciprocal-lattice 
point, F(H)  is the structure factor. Expanding the 
bracket of (10) now as far as the second term, we have 

To/(H) = ~ f p  exp [2~i R f  H] (2xdsipH- 2y~282pH2). (15) 
P 

The first term in the bracket makes no contribution 
since ej-~-- 0, and on introducing again the assump- 
tion tha t  eTp is the same for all atoms, we have 

T~j(H) = -2~2e~H 2 ~ f p  exp [27dRp. H] 
P 

= -2xe%~H2NF(H) , 
so tha t  

T~j(H)/F(H) = -27e2e~H2N . (16) 

The same expression is found for T~(H)/F*(H).  Thus 
the changed Laue-Bragg intensity, as given by (14) 
in this case, is 

1-4~2H 2 ~ e~, 
j=l 

which, in our present notation, is simply 1 - 2 M .  We 
therefore have the useful rule tha t  where (14), with 
each T~j(H) expanded as far as terms in e~, gives a 
result 1 - 2 M ,  the more exact result in the particular 
case where each atom is influenced by a large number 
of defects, is exp [ - 2 M ] .  

I t  has been verified tha t  expression (13) leads quite 
directly to the expression given by James (1948, 
p. 208) for the intensity of thermal diffuse scattering. 
In the accompanying paper (Cochran & Kartha,  1956) 
we apply (13) to the calculation of the diffuse scat- 
tering from a crystal containing interstitial atoms. 

One of the authors (G. K.) has great pleasure in 
recording his thanks to the :Nuffield Foundation for 
the award of an Indian Travelling Fellowship in 
Natural  Sciences which enabled him to take part  in 
this work. 
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